Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652192

RESUMO

Acute myelogenous leukaemia (AML) originates and is maintained by leukaemic stem cells (LSCs) that are inherently resistant to antiproliferative therapies, indicating that a critical strategy for overcoming chemoresistance in AML therapy is to eradicate LSCs. In this work, we investigated the anti-AML activity of bortezomib (BTZ), emphasizing its anti-LSC potential, using KG-1a cells, an AML cell line with stem-like properties. BTZ presented potent cytotoxicity to both solid and haematological malignancy cells and reduced the stem-like features of KG-1a cells, as observed by the reduction in CD34- and CD123-positive cells. A reduction in NF-κB p65 nuclear staining was observed in BTZ-treated KG-1a cells, in addition to upregulation of the NF-κB inhibitor gene NFΚBIB. BTZ-induced DNA fragmentation, nuclear condensation, cell shrinkage and loss of transmembrane mitochondrial potential along with an increase in active caspase-3 and cleaved PARP-(Asp 214) level in KG-1a cells. Furthermore, BTZ-induced cell death was partially prevented by pretreatment with the pancaspase inhibitor Z-VAD-(OMe)-FMK, indicating that BTZ induces caspase-mediated apoptosis. BTZ also increased mitochondrial superoxide levels in KG-1a cells, and BTZ-induced apoptosis was partially prevented by pretreatment with the antioxidant N-acetylcysteine, indicating that BTZ induces oxidative stress-mediated apoptosis in KG-1a cells. At a dosage of 0.1 mg/kg every other day for 2 weeks, BTZ significantly reduced the percentage of hCD45-positive cells in the bone marrow and peripheral blood of NSG mice engrafted with KG-1a cells with tolerable toxicity. Taken together, these data indicate that the anti-LSC potential of BTZ appears to be an important strategy for AML treatment.


Assuntos
Bortezomib , Leucemia Mieloide Aguda , NF-kappa B , Células-Tronco Neoplásicas , Estresse Oxidativo , Bortezomib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Animais , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos SCID
2.
Cell Death Discov ; 10(1): 201, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684672

RESUMO

Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs. Herein, we explored the antileukemic potential of emetine, focusing on its effects on AML stem/progenitor cells. Emetine exhibited potent cytotoxic activity both in hematologic and solid cancer cells and induced AML cell differentiation. Emetine also inhibited AML stem/progenitor cells, as evidenced by decreased expression of CD34, CD97, CD99, and CD123 in KG-1a cells, indicating anti-AML stem/progenitor cell activities. The administration of emetine at a dosage of 10 mg/kg for two weeks showed no significant toxicity and significantly reduced xenograft leukemic growth in vivo. NF-κB activation was reduced in emetine-treated KG-1a cells, as shown by reduced phospho-NF-κB p65 (S529) and nuclear NF-κB p65. DNA fragmentation, YO-PRO-1 staining, mitochondrial depolarization and increased levels of active caspase-3 and cleaved PARP (Asp214) were detected in emetine-treated KG-1a cells. Moreover, treatment with the pancaspase inhibitor Z-VAD(OMe)-FMK partially prevented the apoptotic cell death induced by emetine. Emetine treatment also increased cellular and mitochondrial reactive oxygen species, and emetine-induced apoptosis in KG-1a cells was partially prevented by the antioxidant N-acetylcysteine, indicating that emetine induces apoptosis, at least in part, by inducing oxidative stress. Overall, these studies indicate that emetine is a novel potential anti-AML agent with promising activity against stem/progenitor cells, encouraging the development of further studies aimed at its clinical application.

3.
Cell Death Discov ; 10(1): 147, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503729

RESUMO

Acute myeloid leukaemia (AML) is a haematological malignancy characterised by the accumulation of transformed myeloid progenitors in the bone marrow. Piplartine (PL), also known as piperlongumine, is a pro-oxidant small molecule extracted from peppers that has demonstrated antineoplastic potential in solid tumours and other haematological malignancies. In this work, we explored the potential of PL to treat AML through the use of a combination of cellular and molecular analyses of primary and cultured leukaemia cells in vitro and in vivo. We showed that PL exhibits in vitro cytotoxicity against AML cells, including CD34+ leukaemia-propagating cells, but not healthy haematopoietic progenitors, suggesting anti-leukaemia selectivity. Mechanistically, PL treatment increased reactive oxygen species (ROS) levels and induced ROS-mediated apoptosis in AML cells, which could be prevented by treatment with the antioxidant scavenger N-acetyl-cysteine and the pancaspase inhibitor Z-VAD(OMe)-FMK. PL treatment reduced NFKB1 gene transcription and the level of NF-κB p65 (pS536), which was depleted from the nucleus of AML cells, indicating suppression of NF-κB p65 signalling. Significantly, PL suppressed AML development in a mouse xenograft model, and its combination with current AML treatments (cytarabine, daunorubicin and azacytidine) had synergistic effects, indicating translational therapeutic potential. Taken together, these data position PL as a novel anti-AML candidate drug that can target leukaemia stem/progenitors and is amenable to combinatorial therapeutic strategies.

4.
Redox Biol ; 62: 102692, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031536

RESUMO

Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the percentage of immature blasts that presently are classified according to the specific mutations that trigger malignant proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox imbalance as an effective strategy to eliminate AML LSCs.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Homeostase
5.
Redox Biol ; 20: 182-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359932

RESUMO

Piplartine (piperlongumine) is a plant-derived compound found in some Piper species that became a novel potential antineoplastic agent. In the present study, we synthesized a novel platinum complex containing a piplartine derivative cis-[PtCl(PIP-OH)(PPh3)2]PF6 (where, PIP-OH = piplartine demethylated derivative; and PPh3 = triphenylphosphine) with enhanced cytotoxicity in different cancer cells, and investigated its apoptotic action in human promyelocytic leukemia HL-60 cells. The structure of PIP-OH ligand was characterized by X-ray crystallographic analysis and the resulting platinum complex was characterized by infrared, molar conductance measurements, elemental analysis and NMR experiments. We found that the complex is more potent than piplartine in a panel of cancer cell lines. Apoptotic cell morphology, increased internucleosomal DNA fragmentation, without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization and caspase-3 activation were observed in complex-treated HL-60 cells. Treatment with the complex also caused a marked increase in the production of reactive oxygen species (ROS), and the pretreatment with N-acetyl-L-cysteine, an antioxidant, reduced the complex-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. Important, pretreatment with a p38 MAPK inhibitor (PD 169316) and MEK inhibitor (U-0126), known to inhibit ERK1/2 activation, also prevented the complex-induced apoptosis. The complex did not induce DNA intercalation in cell-free DNA assays. In conclusion, the complex exhibits more potent cytotoxicity than piplartine in a panel of different cancer cells and triggers ROS/ERK/p38-mediated apoptosis in HL-60 cells.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Promielocítica Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Platina/farmacologia , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Platina/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA